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An Application of Hierarchical Regression
in the Investigation of Multiple Paternal

Occupational Exposures and
Neuroblastoma in Offspring

Anneclaire J. De Roos, MPH, PhD,1� Charles Poole, ScD,2 Kay Teschke, PhD,3

and Andrew F. Olshan, PhD
2

Background We used hierarchical regression to study the effects of 46 paternal
occupational exposures on the incidence of neuroblastoma in offspring.
Methods The study population included 405 cases and 302 controls. The effect of each
exposure was estimated using both conventional maximum likelihood and hierarchical
regression.
Results Using hierarchical regression, overall precision was greatly enhanced
compared to the conventional analysis. In addition, adjustment of effect estimates based
on prespeci®ed prior distributions of the true effect parameters allowed a more consistent
interpretation across the entire panel of exposures. Estimates for several metals and
solvents were shrunk close to the null value, whereas estimates for several thinner
solvents, diesel fuel, solders, wood dust, and grain dust remained moderately elevated.
Conclusions Hierarchical regression may mitigate some of the problems of the conven-
tional approach by controlling for correlated exposures, enhancing the precision of
estimates, and providing some adjustment of estimates based on prior knowledge. Am. J.
Ind. Med. 39:477±486, 2001. ß 2001 Wiley-Liss, Inc.
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INTRODUCTION

When studying associations between rare diseases and

occupational exposures, the population-based case-control

study is the most practical design. In conducting these

studies, information is usually collected by questionnaire

on numerous occupational exposures, in order to most

ef®ciently `screen' a long list of chemical and physical

agents. Effect estimates are traditionally calculated by

including each exposure in a separate logistic regression

model, along with any potential confounders. There are

several problems with this approach. First, people often

experience combined exposures to different agents in the
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workplace, and the conventional analysis in which each

exposure is included in a separate model does not account

for probable correlation between occupational exposures.

Second, the precision of estimates tends to vary consider-

ably among the different exposures, depending on the

number of persons exposed to each agent. Third, the

occurrence of false associations by chance is of concern as

in any epidemiologic study. These problems are particularly

troubling in the situation in which multiple exposures are

evaluated based on little prior knowledge. Presumably,

results from such a preliminary study would be followed by

research focusing on a few suspect agents, with epidemio-

logic studies using more sophisticated exposure assessment

methods, or laboratory studies to determine effects of sus-

pect agents on in vitro or animal models for the disease

in question. However, when multiple effect estimates are

elevated, the imprecision of some estimates in addition

to potential confounding or generation of false positive

associations, makes interpretation of the entire panel of

results dif®cult. It would be helpful to minimize the total

error in such case-control analyses to clarify a focus for

further research.

Hierarchical regression, also known as multilevel or

random-coef®cient modeling, is a statistical method that

can greatly improve the accuracy of unstable estimates,

especially when studying effects of multiple exposures with

limited data [Greenland, 1994, 2000, 2001]. In this type

of analysis, disease outcomes are regressed on multiple

exposures in a ®rst-stage model. The beta coef®cients from

the ®rst stage are then modeled as values of the outcome

variable in a second-stage linear regression model, as a

function of second-stage or `prior' covariates that are

thought to determine the magnitude of the true effects, or

target parameters [Greenland, 1994, 2001]. Effect estimates

and con®dence limits are adjusted by an empirical-Bayes

(EB) or semi-Bayes procedure that `shrinks' unstable

estimates toward estimated prior means of the target

parameters. The shrinkage adjustments are made using the

variance of an assumed prior distribution of the target

parameter for each exposure. This variance is estimated in

empirical-Bayes methods using an iterative procedure, or

the variance can be prespeci®ed in semi-Bayes methods by

specifying a particular range in which a given proportion of

the true parameter values are expected to lie.

Software for hierarchical regression modeling has not

been widely available. However, a procedure written in

SAS/IML for conducting multi-stage modeling of multiple

exposures has recently been posted on the worldwide web

(http://darwin.cwru.edu/�witte/episoft.html) [Witte et al.,

1998], and SAS Proc GLIMMIX can also be adapted to

this purpose [Witte et al., 2001]. We used these methods in

our recent study of the effects of paternal occupational

exposures on the incidence of neuroblastoma, a childhood

cancer, in offspring. In this study, exposures to 46 speci®c

chemical and physical agents were examined. We used the

SAS/IML procedure to conduct hierarchical regression

using semi-Bayes and empirical-Bayes methods to generate

adjusted odds ratios and con®dence limits for the effects of

paternal occupational exposures on the incidence of

neuroblastoma. Results from hierarchical regression models

generated by specifying different prior distributions were

compared to each other, and to results from a conventional

analysis.

MATERIALS AND METHODS

Study population. The study population for this case-

control study of neuroblastoma is described in detail

elsewhere [Olshan et al., 1999]. In brief, cases were patients

under the age of 19 years with a con®rmed new diagnosis of

neuroblastoma between 1 May 1992 and 30 April 1994,

registered at any of 139 participating hospitals in the United

States and English-speaking Canada. The hospitals were

members of either of two pediatric collaborative clinical

trials groups, the Children's Cancer Group or Pediatric

Oncology Group. Of the families contacted, we enrolled 538

cases (73% of those eligible). One matched control for each

of 504 cases was selected by random-digit telephone dialing

(RDD). The response proportion for the RDD screening was

74%. Controls were individually caliper-matched to cases

on date of birth (� 6 months for cases � 3 years of age, � 1

year for cases > 3 years of age).

Data collection. A telephone interview was conducted

with each mother and with the father when available. The

interview included questions on demographic characteris-

tics such as parental age, race, and education. Occupational

history was obtained, including information on dates of

employment, names of employers, occupations, industries,

job titles, speci®c duties, and hours per week. For each job

held during the 2-year period prior to the child's date of

birth, fathers were asked if they had been exposed to

electrical equipment or radiation sources, chemicals, dusts,

fumes, gases, vapors, or oils. Occupational exposure

information was available for a total of 707 fathers (405

case fathers, 302 control fathers).

First-stage exposures. In this study, speci®c chemical

and physical agents were the ®rst-stage exposures of

primary interest. A review of self-reported occupational

exposures was conducted by an industrial hygienist (IH) (K.

Teschke), to increase the speci®city of exposure variables by

reducing the number of false positives in the group classi®ed

as exposed to each agent. The review was blinded to case or

control parent status. The IH review covered all reported

information for each exposure including occupation,

industry, hours of exposure per week, form of the substance,

route of exposure, use of protective equipment or clothing,

work activities, and average distance from electrical

equipment. A father was coded as exposed to a chemical
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substance or compound if the IH review determined

`probable' exposure to that agent in any job. A father was

coded as exposed to electromagnetic ®elds or radiation

(ionizing radiation, radiofrequency ®elds, or extremely low

frequency ®elds) if the IH review determined `probable'

exposure, in any job, to equipment that produces high

levels of one of these frequencies. Each occupational exp-

osure was coded as an indicator variable (1� exposed,

0� unexposed). In total, 46 paternal occupational exposures

were coded and analyzed.

First-stage covariates. Demographic characteristics

thought to be potential confounders of associations between

occupational exposures and neuroblastoma were maternal

education, maternal race, and maternal age at birth of the

index child. The variables were coded using indicator

variables for the following categories: maternal education

(less than high school graduate, high school graduate and/or

some college, college degree or more as the referent),

maternal race (white as the referent, black, Hispanic, other),

and maternal age at birth of the index child (<18, 18±39

years as the referent, � 40 years).

In order to retain information on all 405 case fathers

and 302 control fathers in the analysis of occupational

exposures, we decided to conduct unmatched analyses by

unconditional logistic regression with adjustment for the

matching factor using covariates. The matching factor,

child's age, was coded as a set of indicator variables with

strata as ®ne as numbers would allow (6-month intervals for

ages � 3 years; 2-year intervals for ages 3±11 years, one

variable for ages > 11 years).

Second-stage covariates. The second-stage matrix

contained variables thought to determine the magnitude

of, or explain some of the variability between, the individual

target parameters. These second-stage, or prior, covariates

were indicator variables representing subsets of target

parameters within which the parameters were regarded as

`exchangeable', or as draws from a common prior distribu-

tion [Greenland, 1994, 2000]. We de®ned exchangeable

categories by grouping the ®rst-stage occupational expo-

sures according to similarities in physicochemical proper-

ties, as halogenated hydrocarbons (HCs), nonvolatile HCs,

volatile HCs, metals, paints, thinner solvents, wood-derived

substances, grain-derived dusts, and non-ionizing electro-

magnetic ®eld exposures (see Table I). Some exposures

were included in more than one category (e.g., oil-based

paints, turpentine). Other individual exposures did not have

physicochemical properties that we would expect to

translate into exchangeable biologic effects for neuroblas-

toma; these exposures were therefore not grouped together

(e.g., as in groups of pesticides or dusts). There is little

prior information on the potential for any of the agents to

act as transgenerational carcinogens through a paternally

mediated mechanism; thus, no second-stage covariates

indicating toxicity were used.

The second-stage, or Z-matrix, was structured with one

row for each of the occupational exposures, j. Each row was

composed of 10 elements; column one contained a value of

`1' denoting the presence of an intercept, and the following

nine columns contained values for the each of the prior

covariates, zij; a `1' if the exposure was present in that

category and a `0' if not. An exposure that appeared in more

than one category thus had multiple `1's in its row of the

Z-matrix.

Statistical analyses. In our conventional analysis, each

occupational exposure was evaluated in a separate uncondi-

tional logistic regression model, along with indicator

variables representing child's age (the matching factor),

TABLEI. CodingofSecond-StageCovariates:CategoriesofExchangeability
BetweenTrue Effect Parameters for Occupational Exposuresa;b

Halogenated hydrocarbons Metals
Carbon tetrachloride Brass
Chloroform Bronze
Freon Galvanized steel
Methylene chloride High-speed steel
Perchloroethylene Mild steel
Trichloroethylene Stainless steel

Alloys (NOS)
Non-volatile hydrocarbons Metals (NOS)
Cutting oil Solders (NOS)
Diesel fuel
Kerosene Thinner solvents
Lubricating oil Lacquer thinner

Mineral spirits
Volatile hydrocarbons Oil-basedpaints
Acetone Paint thinner
Alcohols Turpentine
Benzene
Gasoline Wood-derived substances
Glycols or glycol ethers Turpentine
Lacquer thinner Wood dust
Methyl ethyl ketone
Mineral spirits Grain-derived dusts
Naphtha Flourdust
Paint thinner Grain dust
Toluene
Turpentine Non-ionizing EMF
White gas Extremely low frequency fields
Xylene Radiofrequency fields

Paints
Oil-basedpaints
Water-basedpaints

aOtherchemicals analyzedbutnot included in anygrouping: plastics,synthetics,or resins (NOS);
cardboard dust; rubberdust; herbicides (NOS), insecticides (NOS), ionizing radiation.
bNOS,not otherwise specified; EMF,electric andmagnetic fields.
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and the demographic covariates. Exposure odds ratios

estimating incidence rate ratios were estimated using

maximum likelihood.

In the ®rst-stage model of the hierarchical regression

analyses, neuroblastoma disease status was regressed sim-

ultaneously on the 46 paternal occupational exposures,

child's age, and the demographic covariates. This model

took the form: Pr(y� 1| x, w)� expit (a�Xb�Wg), where

X represents an n-row matrix of occupational exposures and

W represents an n-row matrix of potential confounders,

where n represents the number of subjects in the study, and

expit (*) is the logistic function exp (*)/(1� exp (*))

[Greenland, 1998].

The estimated beta coef®cients for the 46 occupational

exposures in the ®rst-stage model were then regressed in a

second-stage linear regression model as a function of the

prior covariates. The second-stage model should incorporate

what is known about each target parameter, bj, prior to

seeing the study data [Greenland, 1994, 2001]. Therefore,

a prior `distribution' was de®ned for the true effect para-

meter for each occupational exposure, with a prior mean

dependent on the joint distribution of second-stage covari-

ates, and a prespeci®ed prior variance for each parameter.

For each occupational exposure, j, the second-stage model

took the form: bj� p1z1j� p2z2j� p3z3j� p4z4j� p5z5j�
p6z6j� p7z7j� p8z8j� p9z9j� dj� zjp� dj, where p is the

column vector containing the second-stage parameters, p1

through p9, and dj the deviation of the effect of occupa-

tional exposure, j, from the sum zjp. Based on the prior

distributions, the second-stage model assumed that each

target parameter deviates randomly around the linear term

on the right hand side of the equation [Greenland, 1992,

1993, 1994, 1998]. In other words, target parameters for

occupational exposures with the same values for the second-

stage covariates were assumed to have been randomly

sampled from a common underlying distribution, with an

unknown mean. In addition to hierarchical models using

the prior covariates to determine prior means of the target

parameters, we ran one hierarchical model with an

intercept-only second-stage matrix, containing no prior

covariates. Because our prior covariates were crudely

speci®ed categories of exchangeability, we wanted to

compare a hierarchical model using no prior covariates to

one using our crudely speci®ed prior covariates, to assess

the bene®t of such a procedure in the face of little or no prior

information. In this intercept-only model, all the target

parameters were assumed to have been sampled from a

common distribution with an unknown mean.

The deviation dj is called the residual effect of

occupational exposure j; it represents effects of exposure j

that are not captured by the sum zjp [Greenland, 1994, 1998,

2001; Witte et al., 1994], or effects above and beyond those

accounted for by the `group' effects of the second-stage

covariates. Residual effects can arise from information not

included in the Z-matrix, such as other information that

could potentially explain variability between the target

parameters; for example, detailed measures of genotoxicity

and carcinogenicity. These residual effects dj are usually

assumed to be independent random quantities having means

of zero and variance t2, where t2 may be ®xed in advance

using background information, as in semi-Bayes analyses,

or may be estimated from the data, as in empirical-Bayes

analyses [Greenland, 1992, 1993, 1994, 1998, 2000, 2001;

Greenland and Poole, 1994; Witte et al., 1994, 1998, 2001].

A large value for t2 would imply that there are likely to be

substantial effects of an exposure beyond those explained by

the second-stage covariates, whereas a small value for t2

would translate into a relatively tight range for the residual

effects, and would imply a greater con®dence that the

effects of the exposure act through mechanisms that are

almost completely mediated through the second-stage cova-

riates. In our semi-Bayes analyses, we used different

prespeci®ed values for t2 in different hierarchical models

to observe the sensitivity of our results to the choice.

Although the hierarchical model can be generalized by

allowing t2 to vary for different ®rst-stage exposures

[Greenland, 1994], we did not feel that we had better prior

information for any speci®c exposure compared to the

others; therefore, in each analysis, the same value for t2 was

assigned to all exposures. Because our Z-matrix was rather

crudely de®ned, we started with a liberal prespeci®ed range

for the residual effects of the occupational exposures. We

assumed, with 95% certainty, that the rate ratio for each

occupational exposure, after adjusting for the second-stage

covariates, would fall within a 10-fold range (e.g., between

0.5 and 5.0), or that the dj is, with 95% certainty, an interval

2.3 units wide on the log rate ratio scale (e.g., ln

(0.5)�ÿ0.7 and ln (5.0)� 1.6). Thus, assuming that the

dj are normally distributed with standard deviation of t,

(1.96)(2)t� 2.3, or t� 0.59, and the prior residual variance,

t2, is 0.35. We also conducted two other hierarchical regres-

sion analyses using prespeci®ed ®ve-fold and 2.5-fold

95% ranges to estimate the prior variance, to see if the

results were sensitive to the choice [Greenland, 1992, 1993,

1994, 2001; Greenland and Poole, 1994; Witte et al., 1994]. In

addition, we performed a hierarchical regression analysis

using empirical-Bayes estimation of the residual variance.

The ®rst- and second-stage models together constitute a

two-stage hierarchical regression model [Greenland, 1994,

1998, 2000, 2001]. The prior mean for each occupational

exposure was estimated by substituting the estimated p1

through p9 into the equation, b̂ � Zj�̂. An average of the

estimated prior mean vector and the vector of maximum

likelihood estimates from the ®rst-stage model, weighted by

the covariance matrix of the ®rst-stage estimate and t2,

respectively, gives the estimated posterior coef®cient for

each exposure [Greenland, 1992, 1993, 1994; Witte and

Greenland, 1996].
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RESULTS

The effects of paternal occupational exposures on the

incidence of neuroblastoma in offspring, estimated from the

various analyses, are shown in Table II. The results from our

conventional analysis using maximum likelihood estimation

for each agent separately are presented as Analysis 1. Effect

estimates for some exposures are relatively precise (e.g.,

wood dust, 95% CL ratio� 3.5 [CL ratio� upper con-

®dence limit divided by lower con®dence limit]), while

others are very imprecise (e.g., turpentine, CL ratio� 18.7).

The precision of these estimates is primarily dependent on

the number and distribution of exposed cases and controls.

While some imprecise estimates are suf®ciently elevated to

pique interest for further study (e.g., turpentine, OR� 10.4;

CL ratio� 18.7), other imprecise estimates are only

moderately elevated (e.g., high-speed steel, OR� 2.0; CL

ratio� 15.4), making prioritization of future research

dif®cult. Although each estimate can be interpreted in a

straightforward manner as the observed association between

the exposure and the disease outcome, some of the

associations may result from confounding by combined

exposures to different agents in the workplace. As in any

statistical analysis, false positive associations may also have

occurred by chance. Analysis 1 can be conceived of as a

special case of hierarchical modeling, in which the prior

residual variance is set at in®nity (i.e., odds ratios of any

magnitude are a priori equally likely to occur), and the true

effect parameter for each occupational exposure has its own

independent prior mean [Greenland, 1992]. Therefore, a

second-stage model de®ned in this way would do nothing to

adjust the estimates or con®dence limits from the ®rst stage.

The results from the ®rst-stage model of the hierarch-

ical regression, estimated by simultaneously modeling all

occupational exposures, child's age, and the demographic

covariates using maximum likelihood estimation, are pre-

sented as Analysis 2. Many of these effect estimates are

wildly imprecise (e.g., turpentine, CL ratio� 54). Although

the advantage of such an analysis is to control for the

correlation between exposures that occur together in the

workplace, the imprecision resulting from the inclusion of

so many variables in one model makes the estimates

virtually meaningless. This type of model is really only

useful as a ®rst-stage model for the hierarchical regression.

Analysis 3 shows the results from hierarchical regres-

sion modeling using an intercept-only second-stage matrix,

with a prespeci®ed 10-fold range for the true residual effect

parameters given 95% certainty. There are no prior cova-

riates in the second-stage equation for this analysis. The

results from Analysis 3 show greatly increased precision of

estimates that were previously unstable (e.g., turpentine, CL

ratio� 6.5), and the effect estimates for the previously

unstable estimates have been shrunk closer toward the mean

of all the estimates. Analysis 3 provides somewhat of a

remedy for each of the three problems of the conventional

analysis (Analysis 1). Inclusion of all occupational expo-

sures in a single model controls for potential confounding

by combined occupational exposures. The enhanced preci-

sion of posterior estimates in spite of sparse data gives us

greater con®dence in interpreting the observed results. In

addition, the shrinkage of estimates toward the mean of all

estimates, within an a priori probable range for the

parameters, theoretically provides some adjustment for

results that may occur by chance. Any outlying association

will be penalized in such a way that its posterior estimate

will be closer to those of the other occupational exposures.

Therefore, if the average effect of all occupational expo-

sures is the null value, any non-null association will be

somewhat attenuated. The intercept-only second-stage

model implies dependency among the entire group of

occupational exposures; undoubtedly, the adjustment pro-

cedure could be much improved if it was based on the

distribution of prior covariates that are thought to explain

some of the variability between the effects of different

occupational exposures.

By adding a Z-matrix containing prior covariates to the

second-stage model of the hierarchical regression analysis,

we force the estimates for ®rst-stage exposures with the

same values of second-stage covariates to be more similar to

each other than to those with other values. However, the

results for Analysis 4 show that in this situation, with little

prior information, the grouping of exposures into categories

of exchangeability based on physicochemical properties

adds little information to the overall analysis. With a few

exceptions, the magnitude and precision of estimates from

Analysis 4 are quite similar to those from Analysis 3, in

which no prior covariates were added to the second stage.

Exceptions generally occur where an exposure was included

in more than one category of exchangeability. For example,

turpentine was included in the categories of volatile hydro-

carbons, thinner solvents, and wood-derived substances.

The effect estimate is more elevated and more imprecise

than that in Analysis 3 (OR� 4.8; CL ratio� 13.7), with the

increased imprecision resulting from its complex joint

distribution among second-stage covariates. Presumably,

however, this estimate with the incorporated information

from the second-stage matrix may be more accurate than the

estimate from Analysis 3, albeit more imprecise. Effect

estimates were not always elevated when included in a

category of exchangeability with others that had elevated

odds ratios; for example, the estimate for oil paint is near the

null value, despite its inclusion in the thinner solvent

category along with turpentine, lacquer thinner, mineral

spirits, all of which had elevated odds ratios. The use of

prior covariates in the Z-matrix theoretically improves the

adjustment for associations distributed by random error,

because the effect of each exposure is expected to be more

similar to other exposures with the same values for the prior
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TABLE II. Estimated Effects of Paternal Occupational Exposures (Odds Ratios and 95%Confidence Intervals) on the Incidence of Neuroblastoma in Offspringa,b Listed by Categories of Exchangeabilityc

Analysis 4ö Analysis 5ö Analysis 6ö
Analysis 3ö HM, semi-Bayes, HM, semi-Bayes, HM, semi-Bayes,

Analysis 2ö HMd, semi-Bayes, 10-fold range to 5-fold range to 2.5-fold range to
Number Analysis1ö ML, one stage, 10-fold range to estimate prior estimate prior estimate prior
exposed MLd, one stage, onemodel estimate prior residual variance, residual variance, residual variance,

onemodel for including all residual variancee, with prior with prior with prior
Exposure case control each exposure exposures no prior covariates covariates covariates covariates

Halogenated hydrocarbons
Carbon tetrachloride 4 4 0.6 (0.2, 2.6) 1.1 (0.1,10.2) 0.9 (0.3, 2.5) 0.7 (0.3, 2.1) 0.7 (0.3,1.7) 0.7 (0.4,1.3)
Chloroform 3 2 1.2 (0.2, 7.5) 1.3 (0.1, 20.4) 1.0 (0.4, 2.9) 0.8 (0.2, 2.4) 0.7 (0.3,1.8) 0.7 (0.4,1.4)
Freon 9 13 0.5 (0.2,1.1) 0.5 (0.1,1.7) 0.6 (0.3,1.4) 0.6 (0.2,1.4) 0.6 (0.3,1.3) 0.7 (0.4,1.2)
Methylene chloride 4 4 0.7 (0.2, 2.8) 1.0 (0.2, 7.2) 0.9 (0.4, 2.4) 0.7 (0.3, 2.1) 0.7 (0.3,1.7) 0.7 (0.4,1.4)
Perchloroethylene 4 6 0.5 (0.1,1.7) 0.3 (0.1, 2.7) 0.8 (0.3, 2.1) 0.6 (0.2,1.7) 0.7 (0.3,1.5) 0.7 (0.4,1.3)
Trichloroethylene 9 7 0.9 (0.3, 2.5) 0.7 (0.1, 3.0) 0.9 (0.4, 2.1) 0.8 (0.3,1.9) 0.8 (0.4,1.6) 0.7 (0.4,1.3)

Non-volatile hydrocarbons
Cutting oil 16 7 1.7 (0.7, 4.2) 2.0 (0.5, 7.5) 1.2 (0.5, 2.8) 1.2 (0.5, 3.0) 1.1 (0.5, 2.4) 1.0 (0.6,1.8)
Diesel fuel 42 21 1.5 (0.8, 2.6) 2.2 (0.9, 5.0) 1.5 (0.8, 2.9) 1.5 (0.8, 3.0) 1.3 (0.7, 2.4) 1.1 (0.7,1.8)
Kerosene 16 11 1.0 (0.5, 2.2) 0.4 (0.1,1.4) 0.8 (0.4,1.7) 0.7 (0.3,1.7) 0.8 (0.4,1.7) 0.9 (0.5,1.6)
Lubricating oil or grease 56 36 1.1 (0.7,1.8) 0.9 (0.5,1.9) 1.0 (0.5,1.7) 1.0 (0.5,1.7) 1.0 (0.6,1.7) 1.0 (0.6,1.5)

Volatile hydrocarbons
Acetone 23 19 0.9 (0.5,1.7) 0.4 (0.1, 0.9) 0.6 (0.3,1.3) 0.6 (0.3,1.1) 0.6 (0.4,1.2) 0.8 (0.5,1.2)
Alcohols 35 16 1.8 (0.9, 3.3) 1.4 (0.6, 3.4) 1.3 (0.7, 2.6) 1.3 (0.7, 2.6) 1.2 (0.7, 2.1) 1.0 (0.7,1.6)
Benzene 5 2 2.0 (0.4,10.3) 1.4 (0.1,15.4) 1.1 (0.4, 3.1) 1.0 (0.4, 3.0) 1.0 (0.4, 2.2) 0.9 (0.5,1.5)
Gasoline 45 38 0.8 (0.5,1.3) 0.4 (0.2, 0.9) 0.6 (0.3,1.0) 0.6 (0.3,1.0) 0.6 (0.4,1.1) 0.7 (0.5,1.1)
Glycols or glycol ethers 7 4 1.3 (0.4, 4.6) 1.4 (0.2, 8.3) 1.1 (0.4, 2.9) 1.1 (0.4, 2.9) 1.0 (0.4, 2.1) 0.9 (0.5,1.5)
Lacquer thinner 36 8 3.5 (1.6, 7.8) 3.5 (1.1,11.6) 1.9 (0.9, 4.0) 2.1 (0.9, 4.7) 1.9 (1.0, 3.7) 1.7 (1.0, 2.8)
Methyl ethyl ketone 12 6 1.4 (0.5, 3.8) 0.8 (0.2, 3.6) 1.0 (0.4, 2.3) 0.9 (0.4, 2.1) 0.9 (0.4,1.8) 0.9 (0.5,1.4)
Mineral spirits 26 9 2.2 (1.0, 4.9) 2.2 (0.7, 7.2) 1.4 (0.6, 3.1) 1.8 (0.8, 4.2) 1.7 (0.8, 3.5) 1.6 (0.9, 2.8)
Naphtha 6 3 1.4 (0.4, 5.9) 1.1 (0.1,11.4) 1.1 (0.4, 2.9) 1.0 (0.4, 2.8) 0.9 (0.4, 2.1) 0.9 (0.5,1.5)
Paint thinner 43 17 1.9 (1.0, 3.4) 0.8 (0.3, 2.1) 1.1 (0.6, 2.2) 1.2 (0.6, 2.5) 1.3 (0.7, 2.5) 1.5 (0.9, 2.4)
Toluene 10 7 1.0 (0.4, 2.7) 0.7 (0.2, 3.2) 0.9 (0.4, 2.1) 0.8 (0.3, 2.0) 0.9 (0.4,1.7) 0.9 (0.5,1.4)
Turpentine 25 2 10.4 (2.4, 44.8) 17.8 (2.4,130) 2.0 (0.8, 5.2) 4.8 (1.3,17.9) 3.8 (1.2,12.0) 3.1 (1.2, 7.9)
White gas 5 3 1.2 (0.3, 5.3) 1.1 (0.1,11.0) 1.1 (0.4, 3.0) 1.0 (0.3, 2.8) 0.9 (0.4, 2.1) 0.9 (0.5,1.5)
Xylene 10 5 1.4 (0.5, 4.3) 2.3 (0.4,14.4) 1.1 (0.4, 2.8) 1.2 (0.5, 3.0) 1.0 (0.5, 2.1) 0.9 (0.6,1.5)
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Paints
Oil-based paints 27 14 0.9 (0.3, 3.0) 0.9 (0.3, 3.0) 1.0 (0.5, 2.0) 0.9 (0.4, 2.2) 1.0 (0.5, 2.0) 1.0 (0.5,1.8)
Water-based paints 24 16 1.1 (0.6, 2.2) 0.6 (0.2,1.8) 0.8 (0.4,1.6) 0.6 (0.3,1.3) 0.6 (0.3,1.2) 0.6 (0.3,1.1)

Thinner solvents
Lacquer thinner 36 8 3.5 (1.6, 7.8) 3.5 (1.1,11.6) 1.9 (0.9, 4.0) 2.1 (0.9, 4.7) 1.9 (1.0, 3.7) 1.7 (1.0, 2.8)
Mineral spirits 26 9 2.2 (1.0, 4.9) 2.2 (0.7, 7.2) 1.4 (0.6, 3.1) 1.8 (0.8, 4.2) 1.7 (0.8, 3.5) 1.6 (0.9, 2.8)
Oil-based paints 27 14 0.9 (0.3, 3.0) 0.9 (0.3, 3.0) 1.0 (0.5, 2.0) 0.9 (0.4, 2.2) 1.0 (0.5, 2.0) 1.0 (0.5,1.8)
Paint thinner 43 17 1.9 (1.0, 3.4) 0.8 (0.3, 2.1) 1.1 (0.6, 2.2) 1.2 (0.6, 2.5) 1.3 (0.7, 2.5) 1.5 (0.9, 2.4)
Turpentine 25 2 10.4 (2.4, 44.8) 17.8 (2.4,130) 2.0 (0.8, 5.2) 4.8 (1.3,17.9) 3.8 (1.2,12.0) 3.1 (1.2, 7.9)

Metals
Brass 8 4 1.5 (0.4, 5.2) 0.4 (0.1, 3.9) 1.0 (0.4, 2.5) 1.0 (0.4, 2.5) 1.0 (0.5, 2.2) 1.1 (0.7,1.8)
Bronze 4 2 1.4 (0.3, 7.9) 1.7 (0.1, 50.9) 1.0 (0.3, 2.8) 1.1 (0.4, 3.2) 1.1 (0.5, 2.4) 1.1 (0.7,1.8)
Galvanized iron or steel 18 8 1.6 (0.7, 3.9) 1.3 (0.3, 5.0) 1.2 (0.5, 2.7) 1.1 (0.5, 2.6) 1.1 (0.6, 2.2) 1.1 (0.7,1.8)
High-speed steel 8 3 2.0 (0.5, 7.7) 2.8 (0.3, 27.2) 1.1 (0.4, 3.1) 1.2 (0.4, 3.2) 1.1 (0.5, 2.4) 1.1 (0.7,1.8)
Mild steel 15 7 1.6 (0.6, 4.0) 0.4 (0.1, 2.0) 1.0 (0.4, 2.3) 0.9 (0.4, 2.1) 1.0 (0.5,1.9) 1.1 (0.7,1.7)
Stainless steel 13 5 1.9 (0.6, 5.4) 2.8 (0.5,16.2) 1.2 (0.5, 3.1) 1.3 (0.5, 3.3) 1.2 (0.6, 2.5) 1.1 (0.7,1.8)
Alloys (NOSa) 3 5 0.4 (0.9,1.7) 0.2 (0.1,1.5) 0.7 (0.3,1.9) 0.7 (0.3, 2.0) 0.9 (0.4,1.9) 1.0 (0.6,1.7)
Metals (NOS) 10 3 2.6 (0.7, 9.5) 2.0 (0.3,15.5) 1.2 (0.5, 3.2) 1.3 (0.5, 3.4) 1.2 (0.6, 2.5) 1.1 (0.7,1.9)
Solders (NOS) 17 5 2.6 (0.9, 7.1) 3.4 (0.8,14.1) 1.4 (0.6, 3.4) 1.5 (0.6, 3.6) 1.3 (0.6, 2.7) 1.2 (0.7,1.9)

Wood-derived substances
Turpentine 25 2 10.4 (2.4, 44.8) 17.8 (2.4,130) 2.0 (0.8, 5.2) 4.8 (1.3,17.9) 3.8 (1.2,12.0) 3.1 (1.2, 7.9)
Wooddust 47 26 1.5 (0.8, 2.8) 1.8 (0.9, 3.7) 1.4 (0.8, 2.6) 1.8 (0.9, 3.5) 1.8 (0.9, 3.5) 1.8 (0.9, 3.4)

Grain-derived dusts
Flour dust 8 6 1.3 (0.3, 5.5) 1.4 (0.3, 6.8) 1.2 (0.5, 2.9) 1.6 (0.5, 5.3) 1.6 (0.5, 5.0) 1.6 (0.6, 4.7)
Grain dust 9 6 3.2 (0.7,15.2) 4.4 (0.7, 29.7) 1.4 (0.5, 3.7) 2.0 (0.5, 7.3) 1.8 (0.5, 6.0) 1.7 (0.6, 5.1)

Non-ionizing EMF4

Extremely low frequency fields 57 34 1.2 (0.8,1.9) 0.8 (0.5,1.5) 1.0 (0.6,1.6) 1.0 (0.6,1.7) 1.0 (0.6,1.7) 1.1 (0.7,1.7)
Radiofrequency fields 45 27 1.3 (0.8, 2.2) 1.3 (0.7, 2.3) 1.2 (0.7, 2.0) 1.3 (0.7, 2.1) 1.2 (0.7, 2.0) 1.2 (0.8,1.9)

Cardboard dust 14 15 1.1 (0.4, 3.0) 0.9 (0.3, 2.8) 1.0 (0.5, 2.2) 1.0 (0.4, 2.2) 1.0 (0.5, 2.0) 1.0 (0.6,1.8)
Herbicides (NOS) 13 8 1.3 (0.5, 3.2) 1.7 (0.4, 6.4) 1.2 (0.5, 2.7) 1.2 (0.5, 2.8) 1.1 (0.6, 2.3) 1.1 (0.6,1.8)
Insecticides (NOS) 10 7 1.1 (0.4, 3.0) 0.8 (0.2, 3.3) 1.1 (0.5, 2.4) 1.0 (0.4, 2.4) 1.0 (0.5, 2.1) 1.0 (0.6,1.8)
Ionizing radiation 5 4 1.2 (0.3, 4.5) 1.8 (0.4, 7.4) 1.2 (0.5, 3.0) 1.2 (0.4, 3.1) 1.1 (0.5, 2.5) 1.0 (0.6,1.9)
Plastics, synthetics, resins (NOS) 4 5 0.6 (0.2, 2.3) 0.1 (0.0, 0.9) 0.7 (0.3,1.9) 0.7 (0.2, 2.0) 0.8 (0.3, 2.0) 0.9 (0.5,1.8)
Rubber dust 6 5 2.8 (0.3, 25.5) 5.6 (0.4, 88.1) 1.2 (0.4, 3.5) 1.2 (0.4, 3.9) 1.1 (0.4, 2.8) 1.1 (0.6, 2.0)

an,405Case fathers; 302 control fathers.
bAll estimates are adjusted for child's age,maternal race,maternal age, andmaternal education.
cSubheadings indicate second-stage `prior'covariates or categories of exchangeability; exposuresmay occur inmore than one category.
dML,maximum likelihood estimation; HM,hierarchicalmodel; NOS,not otherwise specified; and EMF,electric andmagnetic fields.
eRange inwhichwe are 95% certain that true effect parameterswill lie, after adjusting for second-stage covariates.
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covariates. Therefore, if one exposure in the entire category

of exchangeability had a falsely elevated or attenuated

association due to chance, its estimate would be forced to be

more similar to the others in the group. Obviously, more

sophisticated speci®cation of the Z-matrix would provide

much better information for adjustment of estimates.

Analyses 5 and 6 are similar to the hierarchical

regression speci®ed in Analysis 4, except for the smaller

values of the prespeci®ed 95% ranges to estimate the prior

variances. These models demonstrate the power the

investigator has in controlling how conservative the esti-

mates should be. The extreme situation in which the prior

95% range for the true parameters is set at a 2.5-fold range,

illustrates that with this tight range, the chances of observing

any but the strongest associations are greatly decreased.

In the hierarchical regression using empirical-Bayes

estimation of the residual variance, t2 was set to zero

(corresponding to a 95% certainty there are no residual

effects of the ®rst-stage exposures after adjusting for the

second-stage covariates), and the SAS/IML procedure

generated an automatic message indicating that there was

possible underdispersion and semi-Bayes methods should

be considered. Because of the potential problems in the

estimation of t2, the results from this model are not

presented.

DISCUSSION

In our conventional analysis of paternal occupational

exposures and the incidence of neuroblastoma in offspring,

there was some indication that exposures to hydrocarbons

such as diesel fuel, lacquer thinner, mineral spirits, and

turpentine, metals such as stainless and high-speed steel,

and dusts such as wood dust were positively associated with

neuroblastoma in offspring (Analysis 1). By adjusting the

estimates based on prespeci®ed prior distributions of the

true effect parameters, a more consistent interpretation of

the effects across the entire panel of exposures was possible.

For example, although effect estimates were originally

elevated for individual metal exposures (Analysis 1), these

estimates were imprecise due to small numbers of persons

exposed to each agent. After adjustment in the hierarchical

regression analyses, most of these effect estimates were

shrunk closer to the null value (Analyses 4). In comparison

to the results for volatile hydrocarbons, of which several

remain moderately elevated following the shrinkage proce-

dure, the results for metals are less convincing. Conversely,

we did not originally place much emphasis on the positive

association observed for grain dust, because of its extreme

imprecision and modestly elevated odds ratio (Analysis 1;

OR� 3.2; CL ratio� 21.7). However, the hierarchical

regression results show that the effect estimate for grain

dust is somewhat elevated even after the shrinkage of the

imprecise effect estimate toward a prior mean (Analysis 4;

OR� 2.0; CL ratio� 14.6). These ®ndings shed some light

on our original interpretation of the data. Based on the

results of the hierarchical regression analyses, further

research into the effects of thinner solvents (lacquer thinner,

mineral spirits, and turpentine), diesel fuel, and grain-, ¯our

and wood dusts appear warranted, although a focus on

metals seems less justi®able.

Although an appropriate value for the variance of true

effect parameters was uncertain, we assumed that the true

rate ratio for the effect of any occupational exposure, after

adjusting for the second-stage covariates, is not likely to fall

outside of a 10-fold range (e.g., between 0.5 and 5.0). Our

results from the semi-Bayes analyses were sensitive to this

choice; the odds ratios are shrunk closer to the null value

in the models with prespeci®ed ®ve-fold and 2.5-fold

ranges, which in some cases would affect our interpretation

of results. With the measurement error and misclassi®cation

inherent in occupational exposure assessment that may

bias odds ratios toward the null value when errors are

independent and non-differential, we felt that interpretation

of results from the more liberal analysis with 10-fold range

was appropriate in this type of preliminary analysis of

associations. In addition, simulation studies have observed

that when conducting hierarchical regression with many

®rst-stage exposures and few second-stage covariates,

overspecifying t2 did not harm the con®dence interval

coverage or the mean squared error of estimates, whereas

underspecifying t2 did [Greenland, 1993; Witte and Green-

land, 1996]. Nonetheless, the entire array of information is

useful in examining the sensitivity of results to the choice of

the 95% prior range for the true residual effect parameters,

and in providing further con®dence in some results that

remain elevated when the prior residual variance is extre-

zmely small.

In our example, use of empirical-Bayes estimation of

the prior residual variance resulted in an estimate of zero for

the variance of target parameters after adjusting for the

second-stage covariates. Given the crude nature of our

second-stage matrix, a value of zero for the prior residual

variance is de®nitely unrealistic, and indicates a failure of

the estimation procedure. Semi-Bayes methods appear to

outperform empirical-Bayes methods when the ratio of

subjects to parameters is not large [Greenland, 1993], as in

our study (707 subjects/46 exposures �7). Thus, semi-

Bayes methods seem preferable in this type of situation in

which multiple effects are being estimated in a study of

limited sample size, as long as the target parameters for a set

of exposures are reasonably expected to fall within a

de®nable range.

Use of a second-stage prior model can greatly improve

the accuracy of effect estimates by modeling similarities

among parameters of interest [Greenland, 1992, 1993, 1994,

1997, 2000; Greenland, 2001; Greenland and Poole, 1994;

Witte and Greenland, 1996; Witte et al., 1994]. However, in
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our study in which there was little prior information, a

crudely speci®ed second-stage covariate matrix did little

to affect most of the estimates beyond the impact of an

intercept-only second-stage model. Where no reliable prior

information exists, a hierarchical regression analysis with an

intercept-only model and prespeci®ed residual variance at

the second stage can be useful in enhancing the precision of

estimates, as in our Analysis 3. Although con®dence interval

coverage rates tend to decrease with decreasing numbers of

second-stage covariates, one simulation study found that

having an intercept-only model did not harm con®dence

interval coverage rates as long as the prior residual variance

was not underspeci®ed [Witte and Greenland, 1996].

Even where only crude prior information exists (as in

the form of categories of exchangeability), a hierarchical

model with a simpli®ed second-stage can outperform

maximum likelihood estimation in enhancing the accuracy

and precision of estimates [Witte and Greenland, 1996].

Some of the estimates in our analysis were changed by the

inclusion of second-stage prior covariates in the model.

However, where the use of prior covariates made a dif-

ference in the magnitude of effect estimates, there was also a

loss of precision. These estimates may be more accurate as a

result of added information provided in the second stage;

however, the loss of precision may affect interpretation. Our

prior covariates were all indicator variables grouping the

®rst-stage exposures into exchangeable categories, and

strati®cation of some of the exposures across several cate-

gories of the prior covariates was responsible for harming

the precision of their posterior estimates. In general, lower

precision occurs with the inclusion of a greater number of

second-stage covariates, especially when the number of

®rst-stage exposures is large [Greenland, 1993; Witte and

Greenland, 1996]. Presumably, however, with the use of a

carefully speci®ed Z-matrix, the loss of precision is offset

by reduction in bias. An improvement on the categories of

exchangeability in our Z-matrix would be prior covariates

that describe the toxicity of occupational exposures; for

example, continuous measures of genotoxic potency that

would determine the effects as linear functions of the

continuous prior covariates. The Z-matrix could alterna-

tively contain components of the ®rst-stage exposures, as in

studies of the effects of individual dietary items at the ®rst-

stage, mediated through the nutrient levels contained within

each dietary item at the second-stage [Witte et al., 1994,

1998, 2001].

Simulation studies of hierarchical regression [Green-

land, 1993, 1997; Witte and Greenland, 1996] have not

addressed validity issues such as selection bias, reporting

bias, and measurement error. In a population-based case-

control study such as ours, these problems may greatly

affect the accuracy of effect estimates. Although we have

taken extensive measures to attain complete case ascertain-

ment, collect a representative sample of population-based

controls, and reduce reporting bias by carefully reviewing

each reported occupational exposure to improve the speci-

®city of our exposure measures, biases may still exist. Some

of these biases could pose particular problems unique to

the results of hierarchical regression analyses. For example,

in our review of self-reported occupational exposures, we

noticed that the frequency of reporting was higher for

identi®able substances (e.g., turpentine) and chemical pro-

ducts with well-known common names (e.g., gasoline),

compared to less frequent reporting of individual chemicals

(e.g., benzene). Because these substances occur in the same

category of exchangeability in the hierarchical regression

models (i.e., volatile hydrocarbons), measurement error

resulting from underreporting of individual chemicals may

bias results in an unknown direction, not only for the

substance with poor reporting, but for all other exposures in

the category, since posterior estimates have been shrunk

toward the common prior mean. Nothing conclusive is

known about the accuracy of these self-reported occupa-

tional exposures; therefore, it is impossible to know to what

extent results may have been in¯uenced by differential

reporting of the individual exposures. As in every statistical

analysis, the quality of data will in part determine the quality

of results.

With the development and increasing availability of

software to perform hierarchical regression analyses, these

procedures are becoming more accessible to application in

epidemiology. The SAS/IML procedure we used is simple,

and solely requires structuring as matrices in the SAS/IML

language the results from the ®rst-stage model, the prior

residual variance, and second-stage covariates. However,

the printed version [Witte et al., 1998] has errors which are

corrected in the downloadable version posted on the

Web. Also the procedure uses a weighted least-squares

algorithm that tends to produce excessively wide intervals in

small samples [Greenland, 1993]. The more sophisticated

penalized-likelihood algorithm used by SAS GLIMMIX

does not suffer from this problem [Greenland, 1997] and is

also simple to use for epidemiologic analysis [Witte et al.,

2001].

With relative ease of use, such analyses should become

more commonplace in occupational epidemiology studies in

which investigators perform preliminary screening of

multiple occupational exposures without a priori hypoth-

eses. Interpretation of results from hierarchical regression

analyses may mitigate some of the problems inherent in

conventional analyses, by controlling for correlated expo-

sures, enhancing the precision of estimates, and providing

some adjustment for associations occurring by chance by

incorporating prior knowledge into the analysis. As in any

occupational study, collection of accurate exposure infor-

mation is crucial, and exposure assessment for use in

hierarchical modeling requires additional thought as to

the comparability of information quality across multiple
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exposures, and the potential impact of data quality for

individual exposures on the panel of results.
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